Reeb lie derivatives on real hypersurfaces in complex hyperbolic two-plane Grassmannians

نویسندگان

چکیده

In complex two-plane Grassmannians G2(Cm+2) = SU2+m/S(U2?Um), it is known that a real hypersurface satisfying the condition (L?(k)?R?)Y (L?R?)Y locally congruent to an open part of tube around totally geodesic G2(Cm+1) in G2(Cm+2). this paper, as abient space, we consider hyperbolic Grassmannian SU2,m/S(U2?Um) and give complete classification Hopf hypersurfaces with above condition.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrent Jacobi Operator of Real Hypersurfaces in Complex Two-plane Grassmannians

In this paper we give a non-existence theorem for Hopf hypersurfaces in the complex two-plane Grassmannian G2(C) with recurrent normal Jacobi operator R̄N .

متن کامل

Hypersurfaces with Isometric Reeb Flow in Hermitian Symmetric Spaces of Rank 2

In this talk, first we introduce the classification of homogeneous hypersurfaces in some Hermitian symmetric spaces of rank 1 or rank 2. In particular, we give a full expression of the geometric structures for hypersurfaces in complex two-plane Grassmannians G2(C) or in complex hyperbolic twoplane Grassmannians G2(C). Next by using the isometric Reeb flow we give a complete classification for h...

متن کامل

Real Hypersurfaces with Constant Principal Curvatures in Complex Hyperbolic Spaces

We present the classification of all real hypersurfaces in complex hyperbolic space CHn, n ≥ 3, with three distinct constant principal curvatures.

متن کامل

Homogeneous Hypersurfaces in Complex Hyperbolic Spaces

We study the geometry of homogeneous hypersurfaces and their focal sets in complex hyperbolic spaces. In particular, we provide a characterization of the focal set in terms of its second fundamental form and determine the principal curvatures of the homogeneous hypersurfaces together with their multiplicities.

متن کامل

Pseudo Ricci symmetric real hypersurfaces of a complex projective space

Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2023

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2303915p